Application of CDCC to many-body breakup reaction

Takuma Matsumoto
Department of Physics, Kyushu University

Introduction

- CDCC: Continuum-Discretized Coupled-Channels method $>$ Developed by Kyushu group about 30 years ago
M. Kamimura, et al., Prog. Theor. Phys. Suppl. 89, 1 (1986)
$>$ Proposed as a method of treating three-body reaction system.
$>$ Successful for analyses of nuclear and Coulomb breakup reactions
$>$ Extended to describe many-body reaction system
- Applied to study of unstable nuclei, cosmology and astrophysics, and nuclear engineering.

Study of Unstable nuclei

- The unstable nuclear structure can be efficiently investigated via breakup reactions.

- An accurate method of treating breakup processes is highly desirable.

Three-Body and Four-Body Breakup

Four-body Breakup Reaction

Ex.) d, ${ }^{6} \mathrm{Li},{ }^{11} \mathrm{Be},{ }^{8} \mathrm{~B},{ }^{15} \mathrm{C}$, etc.. One-neutron halo

Ex.) ${ }^{6} \mathrm{He},{ }^{11} \mathrm{Li},{ }^{14} \mathrm{Be}$, etc..
Two-neutron halo

Discretization of Continuum

\square Essence of CDCC

$>$ Breakup continuum states of the projectile are described by a finite number of discretized states
$>$ A set of eigenstates forms a complete set within a finite model space that is important for breakup processes

How to describe discretized continuum states

Momentum-bin Method

Average method (Momentum-bin)

$>$ G. H. Rawitscher, Phys. Rev. C 9 (1974), 2210
Two-body system

Exact continuum w.f. $\psi(k, \boldsymbol{r})$

Three-body system
Application of the average method is not easy for four-body breakup reactions, because it requires the exact three-body continuum states.

[^0]
Pseudostate Method

Pseudo-state method

Wave function of discretized state

$$
\hat{\phi}_{i}(\boldsymbol{r})=\sum_{n=1}^{N} C_{n}^{(i)} \varphi_{n}(\boldsymbol{r})
$$

$>$ E. W. Schmid and H. Ziegelmann, The Quantum Mechanical Three-Body Problem p. 192, 1974.
$>$ R. C. Johnson and P. C. Tandy, Nucl. Phys. A 235 (1974), 56.
$>$ B. Anders and A. Lindner, Nucl. Phys. A 296 (1978), 77.
$\varphi_{n}(\boldsymbol{r})$: Basis function (Gaussian, HH, \ldots)
$C_{n}^{(i)}$ can be obtained by diagonalizing H of the projectile

$$
\left[\left(\begin{array}{c}
\\
H_{n n^{\prime}}
\end{array}\right)-\epsilon_{i}\left(\begin{array}{c}
N_{n n^{\prime}}
\end{array}\right)\right]\left(C_{n}^{(i)}\right)=0
$$

The pseudo-state method can be easily applicable to many-body breakup reactions.

Breakup Cross Section

Breakup cross sections calculated by CDCC are discrete in the internal energy of the projectile.
${ }^{6} \mathrm{He}+{ }^{12} \mathrm{C}$ scattering at $240 \mathrm{MeV} /$ nucl.

4-body CDCC calc.

PRC59, 1252(1999), T. Aumann et al.

Smoothing Function Method

Continuous breakup T-matrix element

Neutron removal cross section

Momentum distribution

Black circle : Fourier transformation of the w.f.

$$
f\left(k_{z}\right)=\int e^{i k_{z} z} \psi(k, r) d r
$$

Momentum distribution corresponds to the Fourier transformation of the wave function.

Analyses of ${ }^{17} \mathrm{C}$ and ${ }^{18} \mathrm{C}$

Neutron in d-wave
${ }^{17} \mathrm{C}\left(\mathrm{E}_{\mathrm{x}}=0.33 \mathrm{MeV}\right): 5 / 2^{+}$

Neutron in s-wave
${ }^{17} \mathrm{C}\left(\mathrm{E}_{\mathrm{x}}=0.21 \mathrm{MeV}\right): 1 / 2^{+}$

Neutron in d-wave
Y. Kondo, T. Nakamura, Y. Sato, T. M. N. Aoi et al., Phys. Rev. C79, 014602 (2009)

Smoothing Function Method (4-body)

Four-body breakup system

Continuous T-matrix elements

$$
T(\vec{k}, \vec{K}, \vec{P})=\langle\psi(\vec{k}, \vec{K}) \chi(\vec{P})| U\left|\Psi^{\mathrm{CDCC}}\right\rangle \approx \sum_{\gamma} f_{\gamma}(\vec{k}, \vec{K}) T_{\gamma}
$$

Smoothing Factor

> Wave functions of three-body breakup continuum are needed.

$$
f_{\gamma}(\vec{k}, \vec{K})=\left\langle\psi(\vec{k}, \vec{K}) \mid \phi_{\gamma}\right\rangle
$$

Complex-Scaling Method

Complex-scaling operator: U^{θ}

$$
U^{\theta} f(r)=e^{i 3 / 2 \theta} f\left(r e^{i \theta}\right)
$$

Coordinate: $r \rightarrow r e^{i \theta}$
Momentum: $k \rightarrow k e^{-i \theta}$

Useful for searching many-body resonances

Green's function with Complex-Scaling Method (CDCS Green's function)

$$
\mathcal{G}^{(-)}\left(E, \xi, \xi^{\prime}\right)=\frac{1}{E-H-i \epsilon} \approx \sum_{\nu} U^{-\theta} \frac{\left|\Phi_{\nu}^{\theta}\right\rangle\left\langle\tilde{\Phi}_{\nu}^{\theta}\right|}{E-E_{\nu}^{\theta}} U^{\theta}
$$

New Smoothing Procedure with CSM

Response function

$$
\begin{gathered}
\frac{d \sigma}{d E}=\int T^{\dagger}\left(E^{\prime}\right) T\left(E^{\prime}\right) \delta\left(E-E^{\prime}\right) d E^{\prime}=\frac{1}{\pi} \operatorname{Im} \mathcal{R}(E) \\
\left.T(E)=\psi^{(-)}(E, \xi) \chi_{C}^{(-)}(\mathbf{R})|V| \Psi^{(+)}(\xi, \mathbf{R})\right\rangle
\end{gathered}
$$

$$
\mathcal{R}(E)=\int d \xi d \xi^{\prime}\left\langle\Psi^{(+)}(\xi, \mathbf{R})\right| V^{*}\left|\chi_{C}^{(-)}(\mathbf{R})\right\rangle_{\mathbf{R}} \mathcal{G}^{(-)}\left(E, \xi, \xi^{\prime}\right)\left\langle\chi_{C}^{(-)}(\mathbf{R})\right| V\left|\Psi^{(+)}(\xi, \mathbf{R})\right\rangle_{\mathbf{R}}
$$

Green's function with Complex-Scaling Method (CDCS Green's function)

$$
\begin{gathered}
\mathcal{G}^{(-)}\left(E, \xi, \xi^{\prime}\right)=U^{-\theta} \frac{1}{E-H^{\theta}-i \epsilon} U^{\theta} \approx \sum_{\nu} U^{-\theta} \frac{\left|\Phi_{\nu}^{\theta}\right\rangle\left\langle\tilde{\Phi}_{\nu}^{\theta}\right|}{E-E_{\nu}^{\theta}} U^{\theta} \\
\mathcal{R}(E)=\mathcal{G}^{(-)}\left(E, \xi, \xi^{\prime}\right) \approx \sum_{\nu} \sum_{i, j} \sum_{i, j}\left|\Phi_{i}\right\rangle \frac{\left\langle\Phi_{i}\right| U^{-\theta}\left|\Phi_{\nu}^{\theta}\right\rangle\left\langle\tilde{\Phi}_{\nu}^{\theta}\right| U^{\theta}\left|\Phi_{j}\right\rangle}{E-E_{\nu}^{\theta}}\left\langle\Phi_{j}\right| \\
\underbrace{\left.(+)\left|V^{*}\right| \chi_{C}^{(-)} \Phi_{i}\right\rangle}_{\text {T-matrix calculated by CDCC }} \frac{\left\langle\Phi_{i}\right| U^{-\theta}\left|\Phi_{\nu}^{\theta}\right\rangle\left\langle\tilde{\Phi}_{\nu}^{\theta}\right| U^{\theta}\left|\Phi_{j}\right\rangle}{\left.E-E_{\nu}^{\theta}\right\rangle}\left\langle\Phi_{j} \chi_{C}^{(-)}\right| V\left|\Psi^{(+)}\right\rangle
\end{gathered}
$$

Differential Breakup Cross Section

New description of differential breakup cross section

$$
\frac{d \sigma}{d E}=\frac{1}{\pi} \operatorname{Im} \sum_{\nu} \sum_{i, j} T_{i}^{\mathrm{CDCC}} \frac{\left\langle\Phi_{i}\right| U^{-\theta}\left|\Phi_{\nu}^{\theta}\right\rangle\left\langle\tilde{\Phi}_{\nu}^{\theta}\right| U^{\theta}\left|\Phi_{j}\right\rangle}{E-E_{\nu}^{\theta}} T_{j}^{\mathrm{CDCC}}
$$

Breakup Cross Section for ${ }^{6} \mathrm{He}+{ }^{12} \mathrm{C},{ }^{208} \mathrm{~Pb}$

Exp. data from PRC59, 1252 (1999), T. Aumann et al.

Three-body model of ${ }^{11} \mathrm{Li}$

Resonance of ${ }^{11} \mathrm{Li}$

■ Complex-scaling method:
Aoyama, Myo, Kato, and Ikeda, Prog. Theor. Phys. 116, 1 (2006)

- 11Li resonance: S. N. Ershov et al., Phys. Rev. C 70, 054608 (2004).
E. C. Pinilla et al., Phys. Rev. C 85, 054610 (2012).

Energy spectrum of ${ }^{11} \mathrm{Li}\left(p, p^{\prime}\right)$

- The contribution of the dipole resonance dominates the low-lying peak.
- The width of the low-lying peak is reproduced by taking into account non-resonant components.

Borromean Feshbach Resonance

Application to Nuclear Engineering

\square Background
$>$ Lithium is an important element relevant to not only a tritium breeding material in DT fusion reactors but also a candidate for target material in the intense neutron source of IFMIF.
> Accurate nuclear data of nucleon induced reactions on ${ }^{6,7}$ Li are currently required for incident energies up to 150 MeV .
> Statistical model is not applicable to Li scattering because the clustering structure is important for Li

- CDCC calculation

> 6,7 Li structure
${ }^{6} \mathrm{Li}={ }^{4} \mathrm{He}+\boldsymbol{d} \quad$ 2-body cluster model
${ }^{7} \mathbf{L i}={ }^{4} \mathrm{He}+\boldsymbol{t}$
$>$ Nucleon- ${ }^{6,7}$ Li interaction
Single folding model with JLM
This work has been performed at Hokkaido Univ (JCPRG) and Kyushu Univ..

Elastic Scattering of nucleon from ${ }^{6,7} \mathbf{~ L i}$

Guo, Watanabe, Matsumoto, Ogata, Yahiro Phys. Rev. C87, 024610 (2013)

Cross Section for Neutron Emission

${ }^{6}$ Li 4-body CDCC analysis

Neutron emitted spectrum represents the excited structure of ${ }^{6} \mathrm{Li}$, and CDCC calculation well reproduce the data.

Matsumoto, Ichinkhorloo, Hirabayashi, Chiba, Kato Phys. Rev. C83, 064611 (2011)
Ichinkhorloo, Hirabayashi, Kato, Aikawa, Matsumoto Phys. Rev. C86, 064604 (2012).

CDCC + FSI model + SD model

Final-state interaction (FSI) model
Sequential decay (SD) model

$$
\begin{align*}
& p(n)+{ }^{7} \mathrm{Li} \rightarrow p^{\prime}\left(n^{\prime}\right)+{ }^{7} \mathrm{Li}^{*} \rightarrow p^{\prime}\left(n^{\prime}\right)+\alpha+t \tag{a}\\
& p(n)+{ }^{7} \mathrm{Li} \rightarrow t+{ }^{5} \mathrm{Li}\left({ }^{5} \mathrm{He}\right) \rightarrow t+p^{\prime}\left(n^{\prime}\right)+\alpha \tag{b}
\end{align*}
$$

Guo, Watanabe, Matsumoto, Nagaoka, Ogata, Yahiro Phys. Rev. C99, 024610 (2019)

Elastic scattering of nucleon from ${ }^{12} \mathrm{C}$

Inelastic scattering to $\mathbf{2}^{+}$for nucleon $+{ }^{12} \mathrm{C}$

Energy Spectrum for n+ ${ }^{12} \mathrm{C} @ 28 \mathrm{MeV}$

Breakup Cross Section to 2+ continuum

Summary

- CDCC is one of reliable method for treating breakup process accurately for many-body breakup reactions.

■ CDCC is useful for not only study on unstable nuclei but also estimation of nuclear data.
\checkmark Momentum distribution $\left({ }^{17} \mathrm{C},{ }^{18} \mathrm{C}\right) \quad$ Three-body
\checkmark Energy spectrum ($\left.{ }^{6} \mathrm{He},{ }^{11} \mathrm{Li}\right) \quad$ Four-body
\checkmark Nucleon- ${ }^{7,6} \mathrm{Li}$ Three-body
\checkmark Nucleon- ${ }^{12} \mathrm{C} \quad$ Four-body
Resonance \& Energy Spectrum

[^0]: M. M. Rodriguez-Gallardo, et al. Phys. Rev. C 80, 051601(R) (2009).

