Model analysis of isotope-production cross sections for proton- and deuteron-induced reactions on ⁹³Zr *<u>Keita Nakano¹</u>, Yukinobu Watanabe¹, Shoichiro Kawase¹ ¹Department of Advanced Energy Engineering Sciences, Kyushu University

1. Introduction

- Treatment of High-Level Radioactive Waste is a crucial issue due to the long-term radiotoxicity of Long-Lived Fission Products (LLFPs). - Nuclear transmutation has been proposed
- as a possible method of shortening their half-lives.
- in ${}^{93}Zr + p, d$ reactions at RIKEN RIBF^[1,2]

PHITS calculations underestimate cross sections

in neutron-deficient region of odd-Z isotopes.

→ Two-step process:

Intranuclear Cascade (INC) process by INCL4.6^[4], and Evaporation process by GEM^[5]

Calculations:

- No. of events: 1.0×10^7
- INC Process: INCL++ version 6.28
- Evaporation Process: GEM or ABLA07

INC Process: INCL++ A, Z, and excitation energy (E_{χ}) distributions of pre-fragments in INCL++/GEM and INCL++/A calculations are completely the

- **Evaporation Process:** GEM or A For each event, we recorded
 - $A, Z, and E_{\gamma}$ for pre-fragment (A_{pre}, Z_{pre}) ,
 - A, Z, and kinetic energy (E_{kin}) for residual nuclei and for
 - emission particles (A_{res}, Z_{res}). Event $A_{\text{pre}} | Z_{\text{pre}} | E_x$ [MeV] $A_{\text{res}} | Z_{\text{res}} | E_{\text{kin}}$ [MeV]

3.84

	10 ⁻² -10	1 ABLA07 > G p from ^{92}Z	EM Zr*	iε.Μ n ⁹² γ*
BLA07 same. ABLA07	GEM has larger p-en → Underestimation v	<i>n</i> from ⁹² Zr* <i>n</i> from ⁹² Zr* <i>ABLA07</i> = GEN <i>100 20 40 60 8</i> Excitation Energy <i>nission branching</i> <i>was observed in</i>	$n \text{ from } {}^{92}\text{Y}^*$ $ABLA07 > GEN$ $\frac{100}{E_x} [\text{MeV}]$ $D = \frac{100}{20} \frac{100}{40} \frac{100}{60}$ $\frac{100}{E_x} [\text{MeV}]$ $D = \frac{100}{20} \frac{100}{40} \frac{100}{60}$ $\frac{100}{E_x} [\text{MeV}]$ $D = \frac{100}{20} \frac{100}{40} \frac{100}{60}$	07 in odd- <i>Z</i> .

In ABLA07 and GEM, decay width of particle *j* emission (Γ_i) is calculated from inverse cross section (σ_{inv}) and level density (ρ):

$$\Gamma_j \propto \int_V^{E_{\chi}-Q} \sigma_{\text{inv}}(\varepsilon) \frac{\rho_{\text{fin}}(E_{\chi}-Q-\varepsilon)}{\rho_{\text{init}}(E_{\chi})} d\varepsilon \frac{\beta_{2500}}{\beta_{2000}}$$

10-

Pre-fragment

Residue

	1	-	-	-	91	39	0.04			
	2	93	40	71.54	1	0	3.14			
	2	-	-	-	1	0	4.93			
	2	-	-	-	1	1	6.65			
-	2	-	-	-	87	39	0.14			

12.08

39

92

Data of pre-fragment and residue were stored in ROOT file, and Event-by-Event analysis was performed for each event.

[6] D. Mancusi *et al.*, Phys. Rev. C **90**, 054602 (2014). [7] A. Kelic *et al.*, arXiv 0906 4193 (2009). *V*: Coulomb barrier

 ε : Kinetic energy of emission particle

Both or either σ_{inv} or ρ can be the cause of the underestimation.

 σ_{inv} has no dependence on even-odd of pre-fragment. \rightarrow Level densities (ρ_{fin} , ρ_{init}) must be reconsidered to resolve the underestimation.

4. Summary and Future Perspectives

- Cause of underestimation in odd-Z isotope was investigated. GEM shows larger p-emission branching ratio than ABLA07.
- From the comparison of inverse cross sections, modification of level density in GEM has a possibility to improve the underestimation. - In the future, modification of pairing correction in GEM is expected.