Comparison Between Experimental and Calculation Neutron Spectra of the ¹⁹⁷Au (ɣ,n) Reaction for 17 MeV Polarized Photon

*T.K.Tuyet, A.Takeuchi, _{KEK} T.Sanami, H.Yamazaki, _{JASRI} T.Itoga, S.Miyamoto and Y.Asano

1. Introduction

- Neutron spectra for 17 MeV polarized photons on a thick Au target at angles from 30 to 150 degrees [1,2]
- Two components of neutrons, evaporation and direct, with different angular dependence
- To evaluate models and parameters in theoretical calculation, DDX data are required

DDX of the 197 Au(γ ,n) for 17 MeV polarized photons on a thin target and compared the calculation results

- NewSUBARU, BL-01, Ee=1 GeV, Single bunch
- 1064 nm 20W NdYAG laser
- Mono-energy, 17 MeV, polarized (Horizontal)

Q_value (MeV) Thickness Mass **Target** 197 1 cm 8.07 Au

3. Data Analysis

1. Bias level: 0.25 MeVee (Cs)

2. Time walk: $0.76 \text{ ns } \Delta t$

3. n-γ separation:

4. Neutron energy: TOF, $\Delta E < 10\%$

Number of photon:

• EGS5 calculation: eff.=0.8 %

Neutron detection efficiency

SCINFULQMD: (15.8% for 0.25 MeVee)

4. Calculation

- DDX based on theory: PHITS, version 3.12
- Ideal geometry: Ring is 5cm of width and 100 cm in rad.
- Au target is cylinder, 5 µm of thickness => No attenuation photon, no thickness effect
- 17 MeV photon is pencil beam.

References

[1] Y.Kirihara at al., EPJ Web of Conferences **153**, 01019 (2017)

[2]Y.Kirihara at al., Neutron emission spectrum from gold excited with 16.6 MeV linearly polarized mono energetic photons, Journal of Nuclear Science and Technology, https://doi.org/10.1080/00223131.2019.1691073

5. Result

- The experimental spectrum, two components have been observed, evaporation and direct.
- The evaporation component was identified from the calculation result
- The model to reproduce direct component should be included in physics model of simulation for photo nuclear reaction

Symposium on Nuclear Data at Kyushu University, November 28th – 30th 2019