Development of multi-group neutron activation cross-section library from JENDL/AD-2017

Chikara Konno
Japan Atomic Energy Agency
Email: konno.chikara@jaea.go.jp

JENDL Activation Cross Section File for Nuclear Decommissioning 2017 (JENDL/AD-2017) was released in 2018. Then a multi-group neutron activation cross-section library (MAXS/AD-2017) with the same format as MAXS-2015 by Dr. Okumura has been developed from JENDL/AD-2017 with PREPRO 2018 for activation calculations in nuclear facility decommissioning. MAXS/AD-2017 will be converted to ORIGEN libraries and be tested with the JPDR decommissioning data. In future MAXS/AD-2017 will be released.

1. Introduction

JENDL Activation Cross Section File for Nuclear Decommissioning 2017 (JENDL/AD-2017) [1] was released in 2018. This file includes the data of neutron-induced nuclear reactions for 311 nuclides from 10^{-5} eV to 20 MeV . Dr. Okumura et al. developed a multi-group neutron activation cross-section library (MAXS2015) based on the nuclear data libraries JENDL-4.0 and JEFF-3.0/A for activation calculations in nuclear facility decommissioning [2]. A multi-group neutron activation cross-section library (MAXS/AD2017) with the same format as MAXS-2015 has been developed from JENDL/AD-2017 in order to make it possible to use the new JENDL file for activation calculations in nuclear facility decommissioning.

2. How to make MAXS/AD-2017

JENDL/AD-2017 includes total production cross sections (MF3) of radioactive and stable nuclides, branching ratios (MF9) and partial production cross sections (MF10) for the ground and isomer states of nuclides. JENDL/AD-2017 has the following four versions;

- MF3, MF9 and MF10 at 0 K ,
- MF3, MF9 and MF10 at 293.6 K ,
- MF3 and MF10 at 0 K (for NJOY processing),
- MF3 and MF10 at 293.6 K (for NJOY processing).

MAXS-2015 was produced with the NJOY2012 [3] code. However it was found that GENDF files produced with the groupr module in NJOY2012 did not include production cross sections to isomer states. Then the PREPRO 2018 [4] code was adopted for producing a group-wise file of JENDL/AD-2017 (MF3, MF9 and MF10 at 0 K). The following modules in PREPRO 2018 were used; ENDF2C, LINEAR, RECENT, SIGMA1, ACTIVATE, FIXUP, DICTIN, GROUPIE. The calculation conditions are as follows;

- Temperature : 300 K ,
- Group structure : 199 groups (VITAMIN-B6),
- Weighting spectrum : Maxwell $+1 / \mathrm{E}+$ Fission,
- Infinite dilution cross section.

The produced group-wise file of JENDL/AD-2017 was converted to MAXS/AD-2017 of the MAXS format [2] with a small program. Figure 1 shows the data of ${ }^{59} \mathrm{Co}$ in MAXS/AD-2017 as an example. Figure 2 plots the capture cross section (red line) of ${ }^{59} \mathrm{Co}$ in MAXS/AD-2017 with the continuous energy one (blue line), where the red line represents the blue line well.

The following issues were pointed out in this processing.

- No information of decay data (MF8) in the capture reaction of ${ }^{187} \mathrm{~W}$ and ${ }^{193} \mathrm{Os} \rightarrow$ Add
- The MT number of the (n, t) reaction of ${ }^{6} \mathrm{Li}$ is changed from 105 to 107 for ORIGEN-S because ORIGEN-S cannot treat the (n, t) reaction.
- The MAXS format includes no data for the ($\mathrm{n}, \mathrm{n}^{\prime}$) reaction \rightarrow MAXS/AD-2017 includes the data for the $\left(\mathrm{n}, \mathrm{n}^{\prime}\right)$ reaction, though ORIGEN-S cannot treat the ($\mathrm{n}, \mathrm{n}^{\prime}$) reaction.
A similar procedure for a DCHAIN-SP library was also established, and was provided to the PHITS group. Users can use the DCHAIN-SP library of JENDL/AD-2017 in the latest PHITS (PHITS3.16).

3. Summary

A multi-group neutron activation cross-section library (MAXS/AD-2017) with the MAXS format was developed from JENDL/AD-2017 for activation calculations in nuclear facility decommissioning. Next MAXS/AD-2017 will be converted to ORIGEN libraries and be tested with the JPDR decommissioning data [5]. Then MAXS/AD-2017 will be released.

4. References

[1] https://wwwndc.jaea.go.jp/ftpnd/jendl/jendl-ad-2017.html
[2] K. Okumura, K. Kojima, K. Tanaka, "Development of multi-group neutron activation cross-section library for decommissioning of nuclear facilities," Proc. of 2014 Symposium on Nuclear Data, p. 43, JAEAConf 2015-003(2016).
[3] R. E. MacFarlane, D. W. Muir, R. M. Boicourt, A. C. Kahler, "The NJOY Nuclear Data Processing System, Version 2012," LA-UR-12-27079, Los Alamos National Laboratory (2012).
[4] https://www-nds.iaea.org/public/endf/prepro2018/
[5] N. P. Kocherov (Ed.), "International benchmark calculations of radioactive inventory for fission reactor decommissioning", INDC(NDS)-355 (1996).
\#MAXS-xs Library
\# Nuclide ID \& Name
270590
Co059
\# back
$1.000000 \mathrm{E}+10$
background XS (sigz<0:effective XS)
\# Temperature (K)
\#Number of Energy groups (NGN)
199
\#Number of Reaction Types (NMT)
\rightarrow
N ㄷ

先
:---
3.545590E-

 $\stackrel{1}{1}$
$\stackrel{3}{8}$
0
n
n
n
n

		$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	-000000E+00	$0.000000 \mathrm{E}+00$								
	7.000000	0.000000	0.000000	0.000000	0.000000	0.000000	$0.000000 \mathrm{E}+00$	2.	0.0	0.	0.	$0.000000 \mathrm{E}+00$	0.0000
	5.000000	0.000000	$0.000000 \mathrm{E}+00$.000000	0.000000	. 000000	0.000000	$2.814737 \mathrm{E}+01$	0.000000	0.000000	$0.000000 \mathrm{E}+0$	0.000000	0.0000
	4	0.00000	. 00	000	0.00000	$0.000000 \mathrm{E}+0$	$0.000000 \mathrm{E}+00$	$3.194631 \mathrm{E}+01$	0.	$0.000000 \mathrm{E}+0$	$0.000000 \mathrm{E}+00$	000	
	$3.000000 \mathrm{E}-02$	0.00	00	$0.000000 \mathrm{E}+00$	00	$0.000000 \mathrm{E}+0$	$0.000000 \mathrm{E}+00$	$3.737702 \mathrm{E}+01$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	
	2.100000E-02	$0.000000 \mathrm{E}+0$	00		$0.000000 \mathrm{E}+0$	$0.000000 \mathrm{E}+$	$0.000000 \mathrm{E}+00$	$4.481709 \mathrm{E}+01$	$0.000000 \mathrm{E}+00$.000000E+	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	
	1.450000	$0.000000 \mathrm{E}+0$	$0.000000 \mathrm{E}+0$	$0.000000 \mathrm{E}+$	$0.000000 \mathrm{E}+0$	$0.000000 \mathrm{E}+$	$0.000000 \mathrm{E}+00$	$5.386065 \mathrm{E}+01$	$0.000000 \mathrm{E}+0$	-.00000E+	0.00000E+0	0.000000E+00	
	$1.000000 \mathrm{E}-02$	0	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	0	0	6.	0	$0.000000 \mathrm{E}+0$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	
	5.000000E-03	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	000000	0.000000	.000000	.000000E+00	002084E+0	$0.000000 \mathrm{E}+00$. $000000 \mathrm{E}+0$.000000E+0	.000000E	000
	2.000000E-03	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	000000E+0	$0.000000 \mathrm{E}+00$.000000E+0	$0.000000 \mathrm{E}+00$	0360E+02	$0.000000 \mathrm{E}+00$.000000E+	.000000E+00	.000000E	0.0000
	5.000000	$0.000000 \mathrm{E}+00$.000000E+00	.000000E+00	$0.000000 \mathrm{E}+0$	$0.000000 \mathrm{E}+0$	$0.000000 \mathrm{E}+00$	$3.544969 E+02$	$0.000000 \mathrm{E}+0$	$0.000000 \mathrm{E}+$.000000E+00	.000000E+	. 0000
	1.000000 E	$0.000000 \mathrm{E}+0$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+$	$0.000000 \mathrm{E}+$	$0.000000 \mathrm{E}+0$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$	$0.000000 \mathrm{E}+0$	$0.000000 \mathrm{E}+00$	0.000000 E	0.00000

Fig. 2 Capture cross section of ${ }^{59} \mathrm{Co}$ in JENDL/AD-2017 (Red line : MAXS/AD-2017).

JENDL／AD－2017 の多群中性子放射化断面積ライブラリ開発

今野 力
日本原子力研究開発機構

