Neutron Capture Cross Section Measurement of Minor Actinides in Fast Neutron Energy Region for Study on Nuclear Transmutation System

Tatsuya Katabuchi

Laboratory for Advanced Nuclear Energy,
Tokyo Institute of Technology

Tatsuya Katabuchi^{1)*}, Jun-ichi Hori³⁾, Nobuyuki Iwamoto²⁾, Osamu Iwamoto²⁾, Atsushi Kimura²⁾, Shoji Nakamura²⁾, Yuji Shibahara³⁾, Kazushi Terada¹⁾, Shunsuke Endo²⁾, Gerard Rovira¹⁾, Yu Kodama¹⁾, Hideto Nakano¹⁾

- 1) Tokyo Institute of Technology, 2) Japan Atomic Energy Agency
- 3) Kyoto University

Project Overview

Motivation

Accurate nuclear reaction data of MAs are necessary for development of nuclear transmutation systems such as an accelerator-driven system (ADS).

Research Project on MA Neutron Capture Data

- Project "Study on accuracy improvement of fast-neutron capture reaction data of long-lived MAs for development of nuclear transmutation systems"
 「核変換システム開発のための長寿命MA核種の高速中性子捕獲反応データの精度向上に関する研究」
- MEXT Innovative Nuclear Research and Development Program 原子カシステム研究開発事業(放射性廃棄物減容・有害度低減技術研究開発 タイプB)
- Period: Oct. 2017 to Mar. 2021

Project Goal

□ This project aims at improving accuracies of neutron capture cross section of long-lived minor actinides (²³⁷Np, ²⁴¹Am, ²⁴³Am) in the fast energy region (0.5 – 500 keV).

Research Background

- The uncertainties of the present evaluated capture cross section data of MAs are not small enough to satisfy requirement for the design of nuclear transmutation systems.
- In particular, the uncertainties of neutron capture cross section data of ²³⁷Np, ²⁴¹Am and ²⁴³Am largely contribute to the uncertainty of criticality calculation of ADS.

Uncertainties by reaction and uncertainties by nuclide of criticality, H. Iwamoto et al., JAEA-Research 2014-033 (2015).

Present Status of MA Nuclear Data

Uncertainties:

Present: >10%, Requirement: 2-3%

- Previous works
 - Less experimental data sets
 - Large disagreement between measured data
- Large uncertainties of MAs are caused by:
 - Background of decay γ-rays from radioactive samples
 - Difficult radioactive sample characterization such as total mass and impurities

Neutron capture cross section of ²⁴³Am

J-PARC

- Japan Proton Accelerator Research Complex (J-PARC)
- Spallation neutron source in Material and Life Science Experimental Facility (MLF)
- □ 3-GeV protons injected to a mercury target.

ANNRI

Issues and Tasks

- Issues
- 1. Double bunch beam structure of the proton beam pulse at J-PARC
- 2. Fast data acquisition for intense pulsed neutron beam at J-PARC
- 3. Impurity assay of MA samples
- Solutions and tasks
- Development of neutron beam filter
 Solution of Issue 1
- 2. Cross section measurement of NaI(TI) Solution of Issue 2
- 3. Sample characteristics assay Solution of Issue 3
- 4. Theoretical nuclear reaction model study
 Nuclear data evaluation for nuclear transmutation

Project Team Structure

- The project consists of four tasks:
 - 1. Development of neutron beam filter system in J-PARC
 - 2. Neutron capture cross section measurement at J-PARC
 - 3. Sample characteristic assay
 - 4. Theoretical reaction model study

Institutes

Plan

- Development and preparation were done from 2017 to 2018.
- Actual measurement will start from 2019.

Development of Neutron Beam Filter

Double Bunch Beam at J-PARC

Double bunch operation

J-PARC is operated at a special mode that two proton beam pulses are injected into the spallation target every 40 ms.

Neutron Beam Filter Technique

A neutron beam filter allows neutrons to pass only at energies for cross section minimums

20 cm thick

Selection of Filter Materials

Materials selected for neutron beam filters

		Material	En (keV)	Thickness (cm)
Fe filter	\longrightarrow	Fe	24	30
Bi filter	—	Bi	2.2, 5.1, 11.5, 15.3, 32.9	30
Al filter	—	Al	27, 125, 265	60
Si filter		Si	54, 146	40
Cr filter	\Longrightarrow	Cr	56, 82	20
Sc filter		Sc_2O_3	7.5, 10.5	100g/cm ²

Test Experiments

Filtered materials were tested at

- J-PARC ANNRI (right)
- ⁷Li(p,n)⁷Be neutron source at Tokyo Tech (bottom)

Examples for 10-cm Fe filter are shown in figures.

The neutron beam filter was inserted into one of the rotary collimator holes.

Cross Section Measurement with Nal(Tl) Detectors

Nal(TI) Spectrometer

■ Use for:

- Complementary use to Ge array
- Faster response: can be used in the high energy range

■ Nal(TI) detectors

- 90° detector: 13" diam. × 8" long
- 125° detector: 8" diam. × 8" long

Shielding

Borated polyethylene, Pb, ⁶LiH, Cd

Data analysis

 The pulse-height weighting technique is established.

Neutron capture yield and cross section

Origin of uncertainties

Cross section
$$\sigma$$
 (cm²)
$$\sigma = \frac{Y}{\phi \xi}$$
 Neutron capture yield Area density of sample atoms (atoms/cm²)

Statistical uncertainties of N_{γ} , N_n Systematic uncertainty:

- Detection efficiency of γ -ray detector ε_{γ}
- Detection efficiency of neutron detector ε_n
- Sample mass, area and area density

 γ -ray counts $\rightarrow Y$ $N_{\gamma} \rightarrow Y = \frac{N_{\gamma}}{\varepsilon_{\gamma}}$

Sample mass and area $\rightarrow (\xi)$

Relative measurement to well-known cross section data

$$\sigma = \frac{Y}{\phi \xi} \times \frac{\phi_{st} \xi_{st}}{Y_{st}} \times \sigma_{st}$$
 Standard cross section
$$= \frac{\varepsilon_{\gamma} N_{\gamma}}{\varepsilon_{\gamma} N_{\gamma.st}} \times \frac{\varepsilon_{n} N_{n.st}}{\varepsilon_{n} N_{n}} \times \frac{\xi_{st}}{\xi} \times \sigma_{st}$$

$$= \frac{N_{\gamma}}{N_{\gamma.st}} \times \frac{N_{n.st}}{N_{n}} \times \frac{\xi_{st}}{\xi} \times \sigma_{st}$$

- Standard cross section: eg. ¹⁹⁷Au(n,γ)¹⁹⁸Au
- First resonance peak
- Thermal cross section

Pros: easy and can be used for many nuclides

Cons: uncertainties of nuclear data introduced.

Absolute measurement: Saturated resonance method

Capture yield with neutron self shielding

$$Y = \phi \frac{\sigma_c}{\sigma_t} (1 - e^{-\xi \sigma_t})$$

When the sample is very thick,

$$Y = \phi \frac{\sigma_c}{\sigma_t}$$

In addition, scattered neutrons are captured in the multiple scattering process. Then,

$$Y = \phi$$

This constraint can be used to determine the absolute value of neutron capture cross section.

$$\sigma = \frac{Y}{\phi \xi} \to \frac{1}{\xi}$$
or
$$\frac{Y}{\phi} = \frac{N_{\gamma}}{\varepsilon_{\gamma}} \frac{\varepsilon_{n}}{N_{n}} = 1 : \frac{\varepsilon_{n}}{\varepsilon_{\gamma}} = \frac{N_{n}}{N_{\gamma}}$$

Example of saturated resonance method: ¹⁹⁷Au(n,γ) ¹⁹⁸Au

$$\frac{\varepsilon_n(4.9 \text{ eV})}{\varepsilon_{\gamma}} = \frac{N_n}{N_{\gamma}}$$

$$\varepsilon_n(E_n) \propto f(E_n)$$

$$\varepsilon_n(E_n) = \frac{\varepsilon_n(4.9 \text{ eV})}{\varepsilon_{\gamma}} f(E_n)$$

Pros: No nuclear data is needed.

Cons: Thick sample is needed.

New method: sample rotation method

Self-shielding ratio can be determined by changing the effective thickness of sample by rotation

First resonance peak

²³⁷Np: 0.49 eV, ²⁴¹Am: 0.30 eV

²⁴³Am: 1.35 eV

 $\frac{Y}{\phi}$ (< 1) can be determined.

System upgraded

■ Fast data acquisition

- ✓ A waveform digitizer board (CAEN V1720) is used for fast data acquisition. The time-of-flight and the pulse height of each event are calculated from offline analysis.
- ✓ Count loss at a high counting rate is minimized.

Sample rotation system

- ✓ A sample rotation system was designed and built to change the sample thickness by rotating the sample.
- ✓ Different sample thickness measurements can be achieved without purchasing multiple samples.

CAEN V1720

Sample Characteristic Assay

Sample Characteristic Assay

Thermal ionization mass spectrometer (TIMS)

- We use a TIMS of Kyoto University to analyze the isotope compositions and impurities of samples.
- Unsealed MA solution taken from the same batch as the sealed MA samples were prepared.
- In the past two years, the TIMS was upgraded to improve its vacuum system and stability control of the beam intensity.
- In the previous project, Pu impurities were found in Am samples. To analyze the Pu impurities precisely, standard Pu solution is planned to purchase in 2019.
- The target precision is less than 1%.

Nuclear Reaction Model Study

Evaluation Flow

Calculation of Detector Response Function

Monte Carlo simulation code PHITS was used to calculate detector response functions.

Folding with Detector Response Functions

Summary

- A project "Study on accuracy improvement of fast-neutron capture reaction data of long-lived MAs for development of nuclear transmutation systems" is ongoing as a joint project of the three institutes, Tokyo Tech, JAEA and Kyoto University.
- □ The project focuses on neutron capture reaction of Mas, especially ²³⁷Np, ²⁴¹Am and ²⁴³Am, in the fast neutron energy region. An intense neutron beam from a spallation source of J-PARC will be employed to improve the neutron capture data of MA.
- The past two years were spent for development and preparation. Actual measurement will start in 2019.

Acknowledgements

This work is supported by the Innovative Nuclear Research and Development Program from the Ministry of Education, Culture, Sports, Science and Technology of Japan.