

R&D of particle accelerators for medical and industrial applications at HUST

Bin Qin, for Accelerator Group

State Key Laboratory of Advanced Electromagnetic Engineering and Technology (AEET) Huazhong University of Science and Technology

2015, September 15th, FFAG Workshop 2015 @ Kyushu University

OUTLINE

1. Electron accelerators for industrial irradiation

Motivation

ICT type high voltage accelerator (0.3-1MeV)

Considerations of semi-isochronous scaling FFAG (5-10MeV)

2. HUST proton therapy project

Status and challenges of proton therapy in China

Proposal of a proton therapy system based on superconducting cyclotron scheme

Design considerations

Irradiation processing using electron beams

Economic scale: In U.S. ~200 billion dollars, 3.9% GDP; In China, predicted growth 15% per year; 10% growth rate world wide

→ Applications of low energy electron accelerators (< I MeV)</p>

Applications	Electron beam energy	
vulcanization of rubber	≤ 500 keV	
Surface coating	80-300 keV	
Battery Separator	≤ 300 keV	
Waste water processing	0.5-1 MeV	
Flue gas cleaning	125 keV	
hydrogel product	≤ 300 keV	
Dioxin processing	300 keV	

R&D of ICT electron accelerator for industrial irradiation

ICT (insulated core transformer) type electron accelerator is an optimum choice for

low energy applications

- High efficiency (>85%)
- Energy range 0.3-1MeV
- High power, up to 100kW

L. Yang, J. Yang et al., Rev. Sci. Instrum. 85, 063302 (2014)

- ICT high voltage power supply proposed by Van De Graaf 1;
- 1 primary coil + multiple secondary coils, output from rectifiers connected in series to achieve high voltage
- R. J. Van de Graaff, "High voltage electromagnetic apparatus having an insulating magnetic core," U.S. patent 3,187,208 (1 June 1965).

Design and Development of an 300keV/30mA ICT

- Challenges: high level magnetic flux leakage at upper layers, lead to significant voltage decrease
- Compensation using increased turns number and parallel capacitors

Courtesy of Jun Yang

Design and Development of an 300keV/30mA ICT

 Test result for ICT power supply: <3.5% for non-uniformity of voltage distribution

Courtesy of Jun Yang

- Demands: Sterilization for medical products and foods
 - Replacement of Co-60 sources
 - · Irradiated food permitted in 57 countries: Garlic (China), Potatoes (Japan), Fruites(US)
- CW beam required for high beam intensity
 - For fast irradiation processing, normally beam intensity > 20mA
 - IBA's Rhodotron, 500-700kW, max. energy 10 MeV

"Ridgetron", N. Hayashizaki et al. / Nucl. Instr. and Meth. in Phys. Res. B 188 (2002) 243–246

Serpentine acceleration in scaling FFAGs

$$B_{z}(r) = B_{0} \cdot (r/r_{0})^{k} \qquad (p/p_{0}) = (r/r_{0})^{k+1} \qquad \frac{T}{T_{s}} = 1 + \frac{\Delta\phi}{2\pi h} = \frac{C/\beta}{C_{s}/\beta_{s}} = \frac{\beta_{s}}{\beta} \cdot (\frac{p}{p_{s}})^{\alpha}$$

$$\Delta\phi = 2\pi h(\frac{\gamma}{\gamma_{s}}(\frac{\gamma^{2}-1}{\gamma_{s}^{2}-1})^{\frac{\alpha-1}{2}} - 1) \qquad = \frac{\gamma}{\gamma_{s}}(\frac{\gamma^{2}-1}{\gamma_{s}^{2}-1})^{\frac{\alpha-1}{2}}$$

$$\begin{cases} \frac{d\phi}{d\theta} = h(\frac{\gamma}{\gamma_{s}}(\frac{\gamma^{2}-1}{\gamma_{s}^{2}-1})^{\frac{\alpha-1}{2}} - 1) \\ \frac{dE}{d\theta} = m_{0}c^{2}\frac{d\gamma}{d\theta} = \frac{eV}{2\pi} \cdot \sin\phi \end{cases}$$

$$H(\gamma,\phi;\theta) = h(\frac{1}{1+\alpha} \cdot \frac{(\gamma^2-1)^{\frac{\alpha+1}{2}}}{\gamma_s(\gamma_s^2-1)^{\frac{\alpha-1}{2}}} - \gamma) + \frac{eV_0}{2\pi m_0 c^2} \cdot \cos\phi$$

E. Yamakawa, T. Uesugi, J.B. Lagrange et al., Serpentine Acceleration in Zero-Chromatic FFAG Accelerators, Nucl. Instrum. Methods Phys. Res. A, Vol. 716(11) 2013, 46-53.

S. Koscielniak Optimum Serpentine Acceleration In Scaling FFAG, Proceedings of Cyclotrons 2013, Vancouver, BC, Canada, MOPPT025.

Example for serpentine channel formation, ~9MeV @ extraction

Figure 1: Formation of the serpentine channel, with k = 6.5, $\gamma_1 = 1.51$, $\gamma_2 = 9.42$, transition energy $\gamma_t = \sqrt{1 + k} = 2.74$, $V_c = 706$ kV. (A) Before the formation of the serpentine channel, $V_{rf} = 500$ kV; (B)critical condition when $V_{rf} = V_c = 706$ kV; (C) formation of the serpentine channel when $V_{rf} = 900$ kV > V_c

Critical voltage for rf

$$H(\gamma_1,\pi)=H(\gamma_2,0)$$

Figure 2: Relations between the critical voltage
$$V_c$$
 and field index k (4.0-8.0), for extraction energy 7-10 MeV

$$\frac{eV_c}{E_0} = \pi h \frac{(\gamma_2 - \gamma_1)(\gamma_1 \gamma_2 \alpha - 1)}{\gamma_1 \gamma_2 (1 + \alpha)}$$

Figure 3: Phase acceptance with various rf voltage, $E_{ext} = 9MeV$, k = 6.0

Case study of a 9 MeV cw FFAG

Figure 4: Search of the working point with k = 4.0 - 8.0, F/D ratio ≈ 2.1 , using FDF triplet lattice

- 9MeV, k=8.0, Vc ~ 800kV, technique challenges for rf system, also for magnet (high k, large gap at injection, fringe field)
- When the extracted energy is decreased to 7MeV, k=6.5, Vc=470kV for good 25 degrees rf phase acceptance

Table 1: Lattice parameters of a FDF triplet

Lattice	Radial FDF triplet
Number of cells	8
Injection / Extraction energy	240 keV / 9 MeV
Momentum ratio	17.26
Mean radius @ 9 MeV	0.8m
Injection radius @ 240keV	0.583m
Field index k	8.0
F/D ratio	2.14 (exactly 2.139)
Open angle F / D	7.0 degree / 3.5 degree(half)
Space between F/D	3.0 degree
Cell tune	$v_r = 0.46, v_z = 0.34$
Ring tune	$v_r = 3.68, v_z = 2.72$
Magnetic field B_F , B_D @ 9MeV	0.19T, 0.15T
Gap size 240keV / 9MeV	25.15cm / 2cm (gap ratio=12.5754)

Figure 5: Magnet model for one FDF cell

Summary (1)

- Demands for EB in industrial applications, both for low energy (<1 MeV), and high energy (5-10 MeV)</p>
- Low energy regime, ICT type high voltage accelerator with high power transfer efficiency (~85%)
- ℍigher energy regime, cw mode scaling FFAG will be a good choice. However, accelerating voltage provided by rf is challenging, as well as the complexity of the magnet and significant fringe field at injection due to large k should be considered

OUTLINE

1. Electron accelerators for industrial irradiation

Motivation

ICT type high voltage accelerator (0.3-1MeV)

Considerations of Isochronous scaling FFAG (7-10MeV)

2. HUST proton therapy project

Status and challenges of proton therapy in China

Proposal of a proton therapy system based on superconducting cyclotron scheme

Design considerations

Status and challenges of proton therapy in China

- The cancer is a leading cause of death worldwide. According to WHO's report, the number of new cancer cases and deaths will reach 15 million and 10 million in 2020; In China, 6.6 million and 3 million respectively
- Compared to X-ray, gamma-ray, and electron beams, Proton therapy is the most effective method in radiation therapy,
 - Minimum damage to healthy tissues surrounding at the target tumor, due to its unique 'Bragg peak' of dose distribution;
 - 48 proton therapy centers located in worldwide, more than 100,000 patients treated, cure rate higher than 80%

Cancer situation in China

- · 30.9% overall cure rate
- Proton therapy in China:
 - · Zibo Tumor Hospital (IBA 230 MeV cyclotron),;
 - Shanghai proton & heavy ion therapy center, start treatment from May-8 2015
- · Limited resources:
 - Some patients go to US, Germany and Japan
 - · RPTC @ Munich, 25% patients come from China
 - Expensive compared to domestic treatment, 3-4 times

CANCERS IN CHINA

Unit: percent	Cancer in urban areas	Cancer in rural areas
Lung	20.48	18.50
Stomach	11.41	15.12
Colorectal	10.41	7.03
Liver	9.78	13.83
Breast	7.61	5.88
Esophageal	6.45	
Other	33.86	26.87

1,699,483 1,393,556

cancers registered in China in 2013

Source: National Central Cancer Registry

ZHANGYE / CHINA DAILY

Background of HUST Proton Therapy Project

- HUST, collaborated with Cyclotron Division of CIAE, are proposing a proton therapy project with the PT center located at Wuhan
 - MeV / 500 nA superconducting cyclotron provides cw proton beam, for fast pencil beam with IMPT (intensity modulated proton therapy)
 - 2 Gantry rooms with +/- 180 degrees range, for 1st phase
 - For center site: A new International Medical Center of HUST is under planning and construction, which includes a proton therapy center covering function of research, development and clinic experiment.

Comparison of different schemes for proton accelerator

	Synchrotrons	(Superconducting) Cyclotrons	Linacs / FFAG (Fixed- field alternating gradient) accelerators
Type of beam	Pulse beam (<100Hz)	CW beam	Pulse beam 100~1000Hz
Beam energy	Proton(250MeV), Carbon(400MeV/u)	Proton(250MeV)	Proton(250MeV), Carbon(400MeV/u)
Energy variable?	Yes	No, ESS (Energy Selection System) required	Yes
Machine size (ring diameter, 250 MeV protons)	6-8m	<=3m (with s.c. coils) 4-5m (room-temperature magnet)	~24m (Linacs) 4~6m (FFAG)
Comments	RFQ-Linac injector required; main choice for carbon machines	Internal cold cathode PIG source can be used, compact when using s.c. technique	Expensive for Linacs, Prototyping stage for FFAGs (attractive scheme for carbon machines)

Isochronous cyclotron & synchro-cyclotron, with superconducting magnets

MSU/PSI/Accel scheme Superconducting isochronous cyclotron: 3T @ ext., 3.2m diameter, internal cold cathode PIG; fixed RF (H. Rocken, CYC2010)

SCENT project @ INFN (L. Calabretta, "PRELIMINARY STUDY OF THE SCENT PROJECT")

IBA S2C2 (superconducting synchrocyclotron): max. 5.7T@C.R., 2.5m diameter, internal cold cathode PIG; 1k Hz rotco RF (W. Kleeven, MO4PB02, CYC2013)

Mevion S250, http://mevion.com/

Overall considerations of HUST SCC-250 Superconducting Cyclotron

- 1) Internal cold cathode PIG source, simplification of injection, for moderate intensity ~500nA
- 2) Spiral shape magnet, for stable axial focusing in low flutter condition
- 3) NbTi/Cu composite superconductor with liquid Helium cooling, maximum 3.2 T average field at extraction
- 4) Precessional extraction: by generating small first harmonic bump before Nu_r=1.0 resonance crossing, enlarge last turn separation.

Design of spiral magnet pole

Superconducting coil induced field possesses dominant part, and the field flutter contributed from pole hill and valley structure is much lower. (F<0.1)

$$v_z^2 = -k + \frac{N^2}{N^2 - 1}F(1 + 2\tan^2 \xi)$$

- Installation of RF cavity and higher RF voltage need the spiral angle as small as possible
- Spiral angle is modulated along the radius, reach maximum at extraction

 k_{ext} is pre-determined by field isochronism condition

$$k_{ext} = \gamma_{ext}^2 - 1 \approx 0.6$$

$$\rightarrow \zeta_{ext} \approx 65^{\circ}$$

Enhanced field flutter by optimizing the magnet structure

Stabilization of tune variation

- ullet u_r varies smoothly as $u_rpprox\gamma$
- ν_z affected by local spiral angle & flutter \rightarrow modified according to the tune values iteratively, automatically by a Python script

- $ullet \
 u_r
 u_z = 1 \ \ ext{avoided};$
- \bullet Walkinshaw resonance $\;\nu_r-2\nu_z=0\;$ avoided in main acceleration region

Field isochronism with trim rods

B. Qin, FFAG Workshop 2015 @ Kyushu University

Precessional extraction – beam centering by A.E.O

- →For high efficient resonant extraction, beams need be pre-centered using accelerating E.O.
 - →To remove coherent oscillation effects
 - →Turns are evenly spaced, before using the field bump

Gordan's method¹: Quasi-fixed center, (x,px) to be the same after one turn acceleration

$$x(E,\theta) = r(E,\theta) - r_e(E,\theta)$$

$$p_x(E,\theta) = p_r(E,\theta) - p_{re}(E,\theta)$$

 (r_e, p_{re}) refers to coordinates in static equilibrium orbit

210-230MeV, 0.6MeV/turn, (L)not centered; (R)centered

¹M. M. Gordon, Single turn extraction, IEEE Trans. Nucl. Sci., 13 (4), 48-57

Precessional extraction

By generating a first harmonic field

$$b1(r,\theta) = b1(r) \cdot \cos(\theta - \theta_0)$$

Before resonance crossing $\nu_r=1$, at θ_0 , a coherent oscillation is created and

$$\Delta R_{pre} = \pi R \cdot \Delta \tau (b1/\overline{B}(R))$$

effective turns during coherent oscillation

$$\Delta \tau = ((\Delta \nu_r / \Delta E) \cdot E_{gain}))^{-1/2}$$

- The radial and azimuthal position of the field bump is very sensitive;
- b1 ban be generated by harmonic coil or trim rod

b1=10Gs, θ_0 =30 deg., dR~8mm

b1=6Gs, θ_0 =30 deg., dR~5mm (coincident with theoretical 4.3mm, eff. Turns = 9)

Summary (2)

- Demands for proton therapy and limited sites in China
- Isochronous cyclotron is an optimum choice to provide cw beam for fast spot / line scanning with IMPT
- 250 MeV / 500 nA Superconducting cyclotron is proposed in HUST; Proton therapy center, with two gantry rooms, planned in International Medical Center of HUST.

Thanks for altention!