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COD —the standard picture

Assuming a linear lattice, the equation of motion is given by Hill’s equation.
7
v+ k=0, v+ kyy =0,

Here we assume motion around a reference orbit, x=x,,y=y, when 8=0. Imposing the
closed orbit condition x(s) = x(s+C), x’(s)=x"(s+C) leads to the equation for the closed

orbit response to distributed set of dipole kicks

T; = 29 v Bif; ————cos (|1); — ;| —7q) > Ly = ZRZJHJ
J

- 7 2sin(mq)
The COD caused by set of dipole kicks is given by the orbit response matrix (RM).

In the case of a single kick, the COD increases linearly with 6.
The COD amplitude varies with 1/sin(mtq), tending to infinity as g approaches integer.



2 (mrad)

40

Simulation setup — bare lattice

The analytic “FFAG” element in Zgoubi is used in this study.
The PyZgoubi interface is used to find the closed orbit,
calculate the optics etc.

To find the closed orbit, track a single particle for a few ,
turns. Record turn-by-turn x and x’ at some point. If the
enclosed phase space area is greater than some threshold,
track again starting from the phase space centre.

Finally, track particles with a small betatron amplitude to
get the transfer matrix and hence the tune and optics.
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Simulation setup — error source

* Introduce a single error source. Since this breaks the symmetry, the entire ring
circumference now needs to be tracked to find the closed orbit.

e The difference of the closed orbit with and without the error source is the COD.
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COD including nonlinear components

Including nonlinearities, the equation of motion around the reference orbit is given
by

kn +ijn \n kn +ijn n
2" + k,r = —Re Z o J (x +1iy) ] + 0, y" + kyy = Im Z o (x + iy) ] + 0,
n>2 n>2
Where th | and sk di bn(s) = —— 0 nls) = 5
ere the normal and skew gradients are  fn(s) = - =0 n\8) = B oan

* Given a finite dipole kick, the solution involves dipole feed down from all the high
order components (sextupole is the leading order).

e Similarly, quadrupole feed down results in variation of the betatron tune with COD
amplitude. For perturbed gradient k, detuning to first order is given by

1 (¢ ) 1 (¢ )
AQ, = _E/o By (s)k(s)ds AQ, = _E/o By(s)k(s)ds



Simplified equation of motion

* The normal gradients can be expressed in term of the scaling index k
r\" 1 d"B k!
° ( ) Bp dx™  pr*(k —n)!

o
* Assuming zero vertical motion and considering normal components only

K!

!/ kx — n Qx
T Rl ;p’r”n!(m—n)!x +

* Keeping just the leading order term (sextupole) one has

v + koo = —kox? + 0,

7 o K(H_l) 2
' + kyxr = — 22 <+ 0,




Approximate solution

* Try an ad-hoc perturbation approach. In the first step solve the linear equation

2+ k=0, >

zo(s)

* Inthe second step, substitute x, into the sextupole term reducing the problem
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Dipole kick polarity

Final COD amplitude can be greater than or less than COD predicted by RM
depending on the pattern of latter.

In the feeddown approximation, pseudo-kick produced by each sextupole should

be the same even though pattern polarity of dipole is reversed.
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Limitations of approximation

 Sextupole feeddown approximation works well as long as the kicks are and small the
the tune isn’t too close to integer.
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horizontal COD (mm)

COD shape

Given a single error source, the shape of the COD is independent of kick amplitude in
a linear lattice. This is not true when nonlinearities are taken into account.
Parameterise shape in terms of the ratio of the difference between closed orbits.
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Conclusions

* The nonlinear multipole components in the magnetic field of
a scaling FFAG has an effect on the COD (both shape and
amplitude). To first order, it can be considered a sextupole
feeddown.

* It should be noted that the effect should be negligible if the
operating point is sufficiently far from an integer tune.

* Others have studied nonlinear dynamics using Hamiltonian

perturbation theory (e.g. R. Ruth). Develop to predict the
effect of nonlinearities on the closed orbit in a scaling FFAG.
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